-- extracted from rfc4802.txt -- at Thu Mar 1 06:08:22 2007 GMPLS-TE-STD-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Unsigned32, Counter32, Counter64, zeroDotZero, Gauge32 FROM SNMPv2-SMI -- RFC 2578 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF -- RFC 2580 TruthValue, TimeStamp, RowPointer FROM SNMPv2-TC -- RFC 2579 InetAddress, InetAddressType FROM INET-ADDRESS-MIB -- RFC 4001 SnmpAdminString FROM SNMP-FRAMEWORK-MIB -- RFC 3411 mplsTunnelIndex, mplsTunnelInstance, mplsTunnelIngressLSRId, mplsTunnelEgressLSRId, mplsTunnelHopListIndex, mplsTunnelHopPathOptionIndex, mplsTunnelHopIndex, mplsTunnelARHopListIndex, mplsTunnelARHopIndex, mplsTunnelCHopListIndex, mplsTunnelCHopIndex, mplsTunnelEntry, mplsTunnelAdminStatus, mplsTunnelOperStatus, mplsTunnelGroup, mplsTunnelScalarGroup FROM MPLS-TE-STD-MIB -- RFC3812 IANAGmplsLSPEncodingTypeTC, IANAGmplsSwitchingTypeTC, IANAGmplsGeneralizedPidTC, IANAGmplsAdminStatusInformationTC FROM IANA-GMPLS-TC-MIB mplsStdMIB FROM MPLS-TC-STD-MIB -- RFC 3811 ; gmplsTeStdMIB MODULE-IDENTITY LAST-UPDATED "200702270000Z" -- 27 February 2007 00:00:00 GMT ORGANIZATION "IETF Common Control and Measurement Plane (CCAMP) Working Group" CONTACT-INFO " Thomas D. Nadeau Cisco Systems, Inc. Email: tnadeau@cisco.com Adrian Farrel Old Dog Consulting Email: adrian@olddog.co.uk Comments about this document should be emailed directly to the CCAMP working group mailing list at ccamp@ops.ietf.org." DESCRIPTION "Copyright (C) The IETF Trust (2007). This version of this MIB module is part of RFC 4802; see the RFC itself for full legal notices. This MIB module contains managed object definitions for GMPLS Traffic Engineering (TE) as defined in: 1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, Berger, L. (Editor), RFC 3471, January 2003. 2. Generalized MPLS Signaling - RSVP-TE Extensions, Berger, L. (Editor), RFC 3473, January 2003. " REVISION "200702270000Z" -- 27 February 2007 00:00:00 GMT DESCRIPTION "Initial version issued as part of RFC 4802." ::= { mplsStdMIB 13 } gmplsTeNotifications OBJECT IDENTIFIER ::= { gmplsTeStdMIB 0 } gmplsTeScalars OBJECT IDENTIFIER ::= { gmplsTeStdMIB 1 } gmplsTeObjects OBJECT IDENTIFIER ::= { gmplsTeStdMIB 2 } gmplsTeConformance OBJECT IDENTIFIER ::= { gmplsTeStdMIB 3 } gmplsTunnelsConfigured OBJECT-TYPE SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of GMPLS tunnels configured on this device. A GMPLS tunnel is considered configured if an entry for the tunnel exists in the gmplsTunnelTable and the associated mplsTunnelRowStatus is active(1)." ::= { gmplsTeScalars 1 } gmplsTunnelsActive OBJECT-TYPE SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of GMPLS tunnels active on this device. A GMPLS tunnel is considered active if there is an entry in the gmplsTunnelTable and the associated mplsTunnelOperStatus for the tunnel is up(1)." ::= { gmplsTeScalars 2 } gmplsTunnelTable OBJECT-TYPE SYNTAX SEQUENCE OF GmplsTunnelEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The gmplsTunnelTable sparsely extends the mplsTunnelTable of MPLS-TE-STD-MIB. It allows GMPLS tunnels to be created between an LSR and a remote endpoint, and existing tunnels to be reconfigured or removed. Note that only point-to-point tunnel segments are supported, although multipoint-to-point and point-to-multipoint connections are supported by an LSR acting as a cross-connect. Each tunnel can thus have one out-segment originating at this LSR and/or one in-segment terminating at this LSR. The row status of an entry in this table is controlled by the mplsTunnelRowStatus in the corresponding entry in the mplsTunnelTable. When the corresponding mplsTunnelRowStatus has value active(1), a row in this table may not be created or modified. The exception to this rule is the gmplsTunnelAdminStatusInformation object, which can be modified while the tunnel is active." REFERENCE "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812." ::= { gmplsTeObjects 1 } gmplsTunnelEntry OBJECT-TYPE SYNTAX GmplsTunnelEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table in association with the corresponding entry in the mplsTunnelTable represents a GMPLS tunnel. An entry can be created by a network administrator via SNMP SET commands, or in response to signaling protocol events." INDEX { mplsTunnelIndex, mplsTunnelInstance, mplsTunnelIngressLSRId, mplsTunnelEgressLSRId } ::= { gmplsTunnelTable 1 } GmplsTunnelEntry ::= SEQUENCE { gmplsTunnelUnnumIf TruthValue, gmplsTunnelAttributes BITS, gmplsTunnelLSPEncoding IANAGmplsLSPEncodingTypeTC, gmplsTunnelSwitchingType IANAGmplsSwitchingTypeTC, gmplsTunnelLinkProtection BITS, gmplsTunnelGPid IANAGmplsGeneralizedPidTC, gmplsTunnelSecondary TruthValue, gmplsTunnelDirection INTEGER, gmplsTunnelPathComp INTEGER, gmplsTunnelUpstreamNotifyRecipientType InetAddressType, gmplsTunnelUpstreamNotifyRecipient InetAddress, gmplsTunnelSendResvNotifyRecipientType InetAddressType, gmplsTunnelSendResvNotifyRecipient InetAddress, gmplsTunnelDownstreamNotifyRecipientType InetAddressType, gmplsTunnelDownstreamNotifyRecipient InetAddress, gmplsTunnelSendPathNotifyRecipientType InetAddressType, gmplsTunnelSendPathNotifyRecipient InetAddress, gmplsTunnelAdminStatusFlags IANAGmplsAdminStatusInformationTC, gmplsTunnelExtraParamsPtr RowPointer } gmplsTunnelUnnumIf OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Denotes whether or not this tunnel corresponds to an unnumbered interface represented by an entry in the interfaces group table (the ifTable) with ifType set to mpls(166). This object is only used if mplsTunnelIsIf is set to 'true'. If both this object and the mplsTunnelIsIf object are set to 'true', the originating LSR adds an LSP_TUNNEL_INTERFACE_ID object to the outgoing Path message. This object contains information that is only used by the terminating LSR." REFERENCE "1. Signalling Unnumbered Links in RSVP-TE, RFC 3477." DEFVAL { false } ::= { gmplsTunnelEntry 1 } gmplsTunnelAttributes OBJECT-TYPE SYNTAX BITS { labelRecordingDesired(0) } MAX-ACCESS read-create STATUS current DESCRIPTION "This bitmask indicates optional parameters for this tunnel. These bits should be taken in addition to those defined in mplsTunnelSessionAttributes in order to determine the full set of options to be signaled (for example SESSION_ATTRIBUTES flags in RSVP-TE). The following describes these bitfields: labelRecordingDesired This flag is set to indicate that label information should be included when doing a route record. This bit is not valid unless the recordRoute bit is set." REFERENCE "1. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, sections 4.4.3, 4.7.1, and 4.7.2." DEFVAL { { } } ::= { gmplsTunnelEntry 2 } gmplsTunnelLSPEncoding OBJECT-TYPE SYNTAX IANAGmplsLSPEncodingTypeTC MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates the encoding of the LSP being requested. A value of 'tunnelLspNotGmpls' indicates that GMPLS signaling is not in use. Some objects in this MIB module may be of use for MPLS signaling extensions that do not use GMPLS signaling. By setting this object to 'tunnelLspNotGmpls', an application may indicate that only those objects meaningful in MPLS should be examined. The values to use are defined in the TEXTUAL-CONVENTION IANAGmplsLSPEncodingTypeTC found in the IANA-GMPLS-TC-MIB module." DEFVAL { tunnelLspNotGmpls } ::= { gmplsTunnelEntry 3 } gmplsTunnelSwitchingType OBJECT-TYPE SYNTAX IANAGmplsSwitchingTypeTC MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates the type of switching that should be performed on a particular link. This field is needed for links that advertise more than one type of switching capability. The values to use are defined in the TEXTUAL-CONVENTION IANAGmplsSwitchingTypeTC found in the IANA-GMPLS-TC-MIB module. This object is only meaningful if gmplsTunnelLSPEncodingType is not set to 'tunnelLspNotGmpls'." DEFVAL { unknown } ::= { gmplsTunnelEntry 4 } gmplsTunnelLinkProtection OBJECT-TYPE SYNTAX BITS { extraTraffic(0), unprotected(1), shared(2), dedicatedOneToOne(3), dedicatedOnePlusOne(4), enhanced(5) } MAX-ACCESS read-create STATUS current DESCRIPTION "This bitmask indicates the level of link protection required. A value of zero (no bits set) indicates that any protection may be used. The following describes these bitfields: extraTraffic This flag is set to indicate that the LSP should use links that are protecting other (primary) traffic. Such LSPs may be preempted when the links carrying the (primary) traffic being protected fail. unprotected This flag is set to indicate that the LSP should not use any link layer protection. shared This flag is set to indicate that a shared link layer protection scheme, such as 1:N protection, should be used to support the LSP. dedicatedOneToOne This flag is set to indicate that a dedicated link layer protection scheme, i.e., 1:1 protection, should be used to support the LSP. dedicatedOnePlusOne This flag is set to indicate that a dedicated link layer protection scheme, i.e., 1+1 protection, should be used to support the LSP. enhanced This flag is set to indicate that a protection scheme that is more reliable than Dedicated 1+1 should be used, e.g., 4 fiber BLSR/MS-SPRING. This object is only meaningful if gmplsTunnelLSPEncoding is not set to 'tunnelLspNotGmpls'." REFERENCE "1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 7.1." DEFVAL { { } } ::= { gmplsTunnelEntry 5 } gmplsTunnelGPid OBJECT-TYPE SYNTAX IANAGmplsGeneralizedPidTC MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates the payload carried by the LSP. It is only required when GMPLS will be used for this LSP. The values to use are defined in the TEXTUAL-CONVENTION IANAGmplsGeneralizedPidTC found in the IANA-GMPLS-TC-MIB module. This object is only meaningful if gmplsTunnelLSPEncoding is not set to 'tunnelLspNotGmpls'." DEFVAL { unknown } ::= { gmplsTunnelEntry 6 } gmplsTunnelSecondary OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates that the requested LSP is a secondary LSP. This object is only meaningful if gmplsTunnelLSPEncoding is not set to 'tunnelLspNotGmpls'." REFERENCE "1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 7.1." DEFVAL { false } ::= { gmplsTunnelEntry 7 } gmplsTunnelDirection OBJECT-TYPE SYNTAX INTEGER { forward(0), bidirectional(1) } MAX-ACCESS read-create STATUS current DESCRIPTION "Whether this tunnel carries forward data only (is unidirectional) or is bidirectional. Values of this object other than 'forward' are meaningful only if gmplsTunnelLSPEncoding is not set to 'tunnelLspNotGmpls'." DEFVAL { forward } ::= { gmplsTunnelEntry 8 } gmplsTunnelPathComp OBJECT-TYPE SYNTAX INTEGER { dynamicFull(1), -- CSPF fully computed explicit(2), -- fully specified path dynamicPartial(3) -- CSPF partially computed } MAX-ACCESS read-create STATUS current DESCRIPTION "This value instructs the source node on how to perform path computation on the explicit route specified by the associated entries in the gmplsTunnelHopTable. dynamicFull The user specifies at least the source and destination of the path and expects that the Constrained Shortest Path First (CSPF) will calculate the remainder of the path. explicit The user specifies the entire path for the tunnel to take. This path may contain strict or loose hops. Evaluation of the explicit route will be performed hop by hop through the network. dynamicPartial The user specifies at least the source and destination of the path and expects that the CSPF will calculate the remainder of the path. The path computed by CSPF is allowed to be only partially computed allowing the remainder of the path to be filled in across the network. When an entry is present in the gmplsTunnelTable for a tunnel, gmplsTunnelPathComp MUST be used and any corresponding mplsTunnelHopEntryPathComp object in the mplsTunnelHopTable MUST be ignored and SHOULD not be set. mplsTunnelHopTable and mplsTunnelHopEntryPathComp are part of MPLS-TE-STD-MIB. This object should be ignored if the value of gmplsTunnelLSPEncoding is 'tunnelLspNotGmpls'." REFERENCE "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812." DEFVAL { dynamicFull } ::= { gmplsTunnelEntry 9 } gmplsTunnelUpstreamNotifyRecipientType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS read-create STATUS current DESCRIPTION "This object is used to aid in interpretation of gmplsTunnelUpstreamNotifyRecipient." DEFVAL { unknown } ::= { gmplsTunnelEntry 10 } gmplsTunnelUpstreamNotifyRecipient OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates the address of the upstream recipient for Notify messages relating to this tunnel and issued by this LSR. This information is typically received from an upstream LSR in a Path message. This object is only valid when signaling a tunnel using RSVP. It is also not valid at the head end of a tunnel since there are no upstream LSRs to which to send a Notify message. This object is interpreted in the context of the value of gmplsTunnelUpstreamNotifyRecipientType. If this object is set to 0, the value of gmplsTunnelUpstreamNotifyRecipientType MUST be set to unknown(0)." REFERENCE "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 4.2. " DEFVAL { '00000000'H } -- 0.0.0.0 ::= { gmplsTunnelEntry 11 } gmplsTunnelSendResvNotifyRecipientType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS read-create STATUS current DESCRIPTION "This object is used to aid in interpretation of gmplsTunnelSendResvNotifyRecipient." DEFVAL { unknown } ::= { gmplsTunnelEntry 12 } gmplsTunnelSendResvNotifyRecipient OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates to an upstream LSR the address to which it should send downstream Notify messages relating to this tunnel. This object is only valid when signaling a tunnel using RSVP. It is also not valid at the head end of the tunnel since no Resv messages are sent from that LSR for this tunnel. If set to 0, no Notify Request object will be included in the outgoing Resv messages. This object is interpreted in the context of the value of gmplsTunnelSendResvNotifyRecipientType. If this object is set to 0, the value of gmplsTunnelSendResvNotifyRecipientType MUST be set to unknown(0)." REFERENCE "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 4.2. " DEFVAL { '00000000'H } -- 0.0.0.0 ::= { gmplsTunnelEntry 13 } gmplsTunnelDownstreamNotifyRecipientType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS read-create STATUS current DESCRIPTION "This object is used to aid in interpretation of gmplsTunnelDownstreamNotifyRecipient." DEFVAL { unknown } ::= { gmplsTunnelEntry 14 } gmplsTunnelDownstreamNotifyRecipient OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates the address of the downstream recipient for Notify messages relating to this tunnel and issued by this LSR. This information is typically received from an upstream LSR in a Resv message. This object is only valid when signaling a tunnel using RSVP. It is also not valid at the tail end of a tunnel since there are no downstream LSRs to which to send a Notify message. This object is interpreted in the context of the value of gmplsTunnelDownstreamNotifyRecipientType. If this object is set to 0, the value of gmplsTunnelDownstreamNotifyRecipientType MUST be set to unknown(0)." REFERENCE "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 4.2. " DEFVAL { '00000000'H } -- 0.0.0.0 ::= { gmplsTunnelEntry 15 } gmplsTunnelSendPathNotifyRecipientType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS read-create STATUS current DESCRIPTION "This object is used to aid in interpretation of gmplsTunnelSendPathNotifyRecipient." DEFVAL { unknown } ::= { gmplsTunnelEntry 16 } gmplsTunnelSendPathNotifyRecipient OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates to a downstream LSR the address to which it should send upstream Notify messages relating to this tunnel. This object is only valid when signaling a tunnel using RSVP. It is also not valid at the tail end of the tunnel since no Path messages are sent from that LSR for this tunnel. If set to 0, no Notify Request object will be included in the outgoing Path messages. This object is interpreted in the context of the value of gmplsTunnelSendPathNotifyRecipientType. If this object is set to 0, the value of gmplsTunnelSendPathNotifyRecipientType MUST be set to unknown(0)." REFERENCE "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 4.2. " DEFVAL { '00000000'H } -- 0.0.0.0 ::= { gmplsTunnelEntry 17 } gmplsTunnelAdminStatusFlags OBJECT-TYPE SYNTAX IANAGmplsAdminStatusInformationTC MAX-ACCESS read-create STATUS current DESCRIPTION "Determines the setting of the Admin Status flags in the Admin Status object or TLV, as described in RFC 3471. Setting this field to a non-zero value will result in the inclusion of the Admin Status object on signaling messages. The values to use are defined in the TEXTUAL-CONVENTION IANAGmplsAdminStatusInformationTC found in the IANA-GMPLS-TC-MIB module. This value of this object can be modified when the corresponding mplsTunnelRowStatus and mplsTunnelAdminStatus is active(1). By doing so, a new signaling message will be triggered including the requested Admin Status object or TLV." REFERENCE "1. Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description, RFC 3471, section 8." DEFVAL { { } } ::= { gmplsTunnelEntry 18 } gmplsTunnelExtraParamsPtr OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-create STATUS current DESCRIPTION "Some tunnels will run over transports that can usefully support technology-specific additional parameters (for example, Synchronous Optical Network (SONET) resource usage). Such parameters can be supplied in an external table and referenced from here. A value of zeroDotzero in this attribute indicates that there is no such additional information." DEFVAL { zeroDotZero } ::= { gmplsTunnelEntry 19 } gmplsTunnelHopTable OBJECT-TYPE SYNTAX SEQUENCE OF GmplsTunnelHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The gmplsTunnelHopTable sparsely extends the mplsTunnelHopTable of MPLS-TE-STD-MIB. It is used to indicate the Explicit Labels to be used in an explicit path for a GMPLS tunnel defined in the mplsTunnelTable and gmplsTunnelTable, when it is established using signaling. It does not insert new hops, but does define new values for hops defined in the mplsTunnelHopTable. Each row in this table is indexed by the same indexes as in the mplsTunnelHopTable. It is acceptable for some rows in the mplsTunnelHopTable to have corresponding entries in this table and some to have no corresponding entry in this table. The storage type for this entry is given by the value of mplsTunnelHopStorageType in the corresponding entry in the mplsTunnelHopTable. The row status of an entry in this table is controlled by mplsTunnelHopRowStatus in the corresponding entry in the mplsTunnelHopTable. That is, it is not permitted to create a row in this table, or to modify an existing row, when the corresponding mplsTunnelHopRowStatus has the value active(1)." REFERENCE "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812. 2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473. " ::= { gmplsTeObjects 2 } gmplsTunnelHopEntry OBJECT-TYPE SYNTAX GmplsTunnelHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table represents additions to a tunnel hop defined in mplsTunnelHopEntry. At an ingress to a tunnel, an entry in this table is created by a network administrator for an ERLSP to be set up by a signaling protocol. At transit and egress nodes, an entry in this table may be used to represent the explicit path instructions received using the signaling protocol." INDEX { mplsTunnelHopListIndex, mplsTunnelHopPathOptionIndex, mplsTunnelHopIndex } ::= { gmplsTunnelHopTable 1 } GmplsTunnelHopEntry ::= SEQUENCE { gmplsTunnelHopLabelStatuses BITS, gmplsTunnelHopExplicitForwardLabel Unsigned32, gmplsTunnelHopExplicitForwardLabelPtr RowPointer, gmplsTunnelHopExplicitReverseLabel Unsigned32, gmplsTunnelHopExplicitReverseLabelPtr RowPointer } gmplsTunnelHopLabelStatuses OBJECT-TYPE SYNTAX BITS { forwardPresent(0), reversePresent(1) } MAX-ACCESS read-only STATUS current DESCRIPTION "This bitmask indicates the presence of labels indicated by the gmplsTunnelHopExplicitForwardLabel or gmplsTunnelHopExplicitForwardLabelPtr, and gmplsTunnelHopExplicitReverseLabel or gmplsTunnelHopExplicitReverseLabelPtr objects. For the Present bits, a set bit indicates that a label is present for this hop in the route. This allows zero to be a valid label value." DEFVAL { { } } ::= { gmplsTunnelHopEntry 1 } gmplsTunnelHopExplicitForwardLabel OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-create STATUS current DESCRIPTION "If gmplsTunnelHopLabelStatuses object indicates that a Forward Label is present and gmplsTunnelHopExplicitForwardLabelPtr contains the value zeroDotZero, then the label to use on this hop is represented by the value of this object." ::= { gmplsTunnelHopEntry 2 } gmplsTunnelHopExplicitForwardLabelPtr OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-create STATUS current DESCRIPTION "If the gmplsTunnelHopLabelStatuses object indicates that a Forward Label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of GMPLS-LABEL-STD-MIB) that contains the label to use on this hop in the forward direction. If the gmplsTunnelHopLabelStatuses object indicates that a Forward Label is present and this object contains the value zeroDotZero, then the label to use on this hop is found in the gmplsTunnelHopExplicitForwardLabel object." DEFVAL { zeroDotZero } ::= { gmplsTunnelHopEntry 3 } gmplsTunnelHopExplicitReverseLabel OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-create STATUS current DESCRIPTION "If the gmplsTunnelHopLabelStatuses object indicates that a Reverse Label is present and gmplsTunnelHopExplicitReverseLabelPtr contains the value zeroDotZero, then the label to use on this hop is found in this object encoded as a 32-bit integer." ::= { gmplsTunnelHopEntry 4 } gmplsTunnelHopExplicitReverseLabelPtr OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-create STATUS current DESCRIPTION "If the gmplsTunnelHopLabelStatuses object indicates that a Reverse Label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of GMPLS-LABEL-STD-MIB) that contains the label to use on this hop in the reverse direction. If the gmplsTunnelHopLabelStatuses object indicates that a Reverse Label is present and this object contains the value zeroDotZero, then the label to use on this hop is found in the gmplsTunnelHopExplicitReverseLabel object." DEFVAL { zeroDotZero } ::= { gmplsTunnelHopEntry 5 } gmplsTunnelARHopTable OBJECT-TYPE SYNTAX SEQUENCE OF GmplsTunnelARHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The gmplsTunnelARHopTable sparsely extends the mplsTunnelARHopTable of MPLS-TE-STD-MIB. It is used to indicate the labels currently in use for a GMPLS tunnel defined in the mplsTunnelTable and gmplsTunnelTable, as reported by the signaling protocol. It does not insert new hops, but does define new values for hops defined in the mplsTunnelARHopTable. Each row in this table is indexed by the same indexes as in the mplsTunnelARHopTable. It is acceptable for some rows in the mplsTunnelARHopTable to have corresponding entries in this table and some to have no corresponding entry in this table. Note that since the information necessary to build entries within this table is not provided by some signaling protocols and might not be returned in all cases of other signaling protocols, implementation of this table and the mplsTunnelARHopTable is optional. Furthermore, since the information in this table is actually provided by the signaling protocol after the path has been set up, the entries in this table are provided only for observation, and hence, all variables in this table are accessible exclusively as read-only." REFERENCE "1. Extensions to RSVP for LSP Tunnels, RFC 3209. 2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473. 3. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812." ::= { gmplsTeObjects 3 } gmplsTunnelARHopEntry OBJECT-TYPE SYNTAX GmplsTunnelARHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table represents additions to a tunnel hop visible in mplsTunnelARHopEntry. An entry is created by the signaling protocol for a signaled ERLSP set up by the signaling protocol. At any node on the LSP (ingress, transit, or egress), this table and the mplsTunnelARHopTable (if the tables are supported and if the signaling protocol is recording actual route information) contain the actual route of the whole tunnel. If the signaling protocol is not recording the actual route, this table MAY report the information from the gmplsTunnelHopTable or the gmplsTunnelCHopTable. Note that the recording of actual labels is distinct from the recording of the actual route in some signaling protocols. This feature is enabled using the gmplsTunnelAttributes object." INDEX { mplsTunnelARHopListIndex, mplsTunnelARHopIndex } ::= { gmplsTunnelARHopTable 1 } GmplsTunnelARHopEntry ::= SEQUENCE { gmplsTunnelARHopLabelStatuses BITS, gmplsTunnelARHopExplicitForwardLabel Unsigned32, gmplsTunnelARHopExplicitForwardLabelPtr RowPointer, gmplsTunnelARHopExplicitReverseLabel Unsigned32, gmplsTunnelARHopExplicitReverseLabelPtr RowPointer, gmplsTunnelARHopProtection BITS } gmplsTunnelARHopLabelStatuses OBJECT-TYPE SYNTAX BITS { forwardPresent(0), reversePresent(1), forwardGlobal(2), reverseGlobal(3) } MAX-ACCESS read-only STATUS current DESCRIPTION "This bitmask indicates the presence and status of labels indicated by the gmplsTunnelARHopExplicitForwardLabel or gmplsTunnelARHopExplicitForwardLabelPtr, and gmplsTunnelARHopExplicitReverseLabel or gmplsTunnelARHopExplicitReverseLabelPtr objects. For the Present bits, a set bit indicates that a label is present for this hop in the route. For the Global bits, a set bit indicates that the label comes from the Global Label Space; a clear bit indicates that this is a Per-Interface label. A Global bit only has meaning if the corresponding Present bit is set." ::= { gmplsTunnelARHopEntry 1 } gmplsTunnelARHopExplicitForwardLabel OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelARHopLabelStatuses object indicates that a Forward Label is present and gmplsTunnelARHopExplicitForwardLabelPtr contains the value zeroDotZero, then the label in use on this hop is found in this object encoded as a 32-bit integer." ::= { gmplsTunnelARHopEntry 2 } gmplsTunnelARHopExplicitForwardLabelPtr OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelARHopLabelStatuses object indicates that a Forward Label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of GMPLS-LABEL-STD-MIB) that contains the label in use on this hop in the forward direction. If the gmplsTunnelARHopLabelStatuses object indicates that a Forward Label is present and this object contains the value zeroDotZero, then the label in use on this hop is found in the gmplsTunnelARHopExplicitForwardLabel object." ::= { gmplsTunnelARHopEntry 3 } gmplsTunnelARHopExplicitReverseLabel OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelARHopLabelStatuses object indicates that a Reverse Label is present and gmplsTunnelARHopExplicitReverseLabelPtr contains the value zeroDotZero, then the label in use on this hop is found in this object encoded as a 32-bit integer." ::= { gmplsTunnelARHopEntry 4 } gmplsTunnelARHopExplicitReverseLabelPtr OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelARHopLabelStatuses object indicates that a Reverse Label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of GMPLS-LABEL-STD-MIB) that contains the label in use on this hop in the reverse direction. If the gmplsTunnelARHopLabelStatuses object indicates that a Reverse Label is present and this object contains the value zeroDotZero, then the label in use on this hop is found in the gmplsTunnelARHopExplicitReverseLabel object." ::= { gmplsTunnelARHopEntry 5 } gmplsTunnelARHopProtection OBJECT-TYPE SYNTAX BITS { localAvailable(0), localInUse(1) } MAX-ACCESS read-only STATUS current DESCRIPTION "Availability and usage of protection on the reported link. localAvailable This flag is set to indicate that the link downstream of this node is protected via a local repair mechanism. localInUse This flag is set to indicate that a local repair mechanism is in use to maintain this tunnel (usually in the face of an outage of the link it was previously routed over)." REFERENCE "1. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, section 4.4.1." ::= { gmplsTunnelARHopEntry 6 } gmplsTunnelCHopTable OBJECT-TYPE SYNTAX SEQUENCE OF GmplsTunnelCHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The gmplsTunnelCHopTable sparsely extends the mplsTunnelCHopTable of MPLS-TE-STD-MIB. It is used to indicate additional information about the hops of a GMPLS tunnel defined in the mplsTunnelTable and gmplsTunnelTable, as computed by a constraint-based routing protocol, based on the mplsTunnelHopTable and the gmplsTunnelHopTable. Each row in this table is indexed by the same indexes as in the mplsTunnelCHopTable. It is acceptable for some rows in the mplsTunnelCHopTable to have corresponding entries in this table and some to have no corresponding entry in this table. Please note that since the information necessary to build entries within this table may not be supported by some LSRs, implementation of this table is optional. Furthermore, since the information in this table is actually provided by a path computation component after the path has been computed, the entries in this table are provided only for observation, and hence, all objects in this table are accessible exclusively as read-only." REFERENCE "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812. 2. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473." ::= { gmplsTeObjects 4 } gmplsTunnelCHopEntry OBJECT-TYPE SYNTAX GmplsTunnelCHopEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table represents additions to a computed tunnel hop visible in mplsTunnelCHopEntry. An entry is created by a path computation component based on the hops specified in the corresponding mplsTunnelHopTable and gmplsTunnelHopTable. At a transit LSR, this table (if the table is supported) MAY contain the path computed by a path computation engine on (or on behalf of) the transit LSR." INDEX { mplsTunnelCHopListIndex, mplsTunnelCHopIndex } ::= { gmplsTunnelCHopTable 1 } GmplsTunnelCHopEntry ::= SEQUENCE { gmplsTunnelCHopLabelStatuses BITS, gmplsTunnelCHopExplicitForwardLabel Unsigned32, gmplsTunnelCHopExplicitForwardLabelPtr RowPointer, gmplsTunnelCHopExplicitReverseLabel Unsigned32, gmplsTunnelCHopExplicitReverseLabelPtr RowPointer } gmplsTunnelCHopLabelStatuses OBJECT-TYPE SYNTAX BITS { forwardPresent(0), reversePresent(1) } MAX-ACCESS read-only STATUS current DESCRIPTION "This bitmask indicates the presence of labels indicated by the gmplsTunnelCHopExplicitForwardLabel or gmplsTunnelCHopExplicitForwardLabelPtr and gmplsTunnelCHopExplicitReverseLabel or gmplsTunnelCHopExplicitReverseLabelPtr objects. A set bit indicates that a label is present for this hop in the route, thus allowing zero to be a valid label value." ::= { gmplsTunnelCHopEntry 1 } gmplsTunnelCHopExplicitForwardLabel OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelCHopLabelStatuses object indicates that a Forward Label is present and gmplsTunnelCHopExplicitForwardLabelPtr contains the value zeroDotZero, then the label to use on this hop is found in this object encoded as a 32-bit integer." ::= { gmplsTunnelCHopEntry 2 } gmplsTunnelCHopExplicitForwardLabelPtr OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelCHopLabelStatuses object indicates that a Forward Label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of GMPLS-LABEL-STD-MIB) that contains the label to use on this hop in the forward direction. If the gmplsTunnelCHopLabelStatuses object indicates that a Forward Label is present and this object contains the value zeroDotZero, then the label to use on this hop is found in the gmplsTunnelCHopExplicitForwardLabel object." ::= { gmplsTunnelCHopEntry 3 } gmplsTunnelCHopExplicitReverseLabel OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelCHopLabelStatuses object indicates that a Reverse Label is present and gmplsTunnelCHopExplicitReverseLabelPtr contains the value zeroDotZero, then the label to use on this hop is found in this object encoded as a 32-bit integer." ::= { gmplsTunnelCHopEntry 4 } gmplsTunnelCHopExplicitReverseLabelPtr OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-only STATUS current DESCRIPTION "If the gmplsTunnelCHopLabelStatuses object indicates that a Reverse Label is present, this object contains a pointer to a row in another MIB table (such as the gmplsLabelTable of GMPLS-LABEL-STD-MIB) that contains the label to use on this hop in the reverse direction. If the gmplsTunnelCHopLabelStatuses object indicates that a Reverse Label is present and this object contains the value zeroDotZero, then the label to use on this hop is found in the gmplsTunnelCHopExplicitReverseLabel object." ::= { gmplsTunnelCHopEntry 5 } gmplsTunnelReversePerfTable OBJECT-TYPE SYNTAX SEQUENCE OF GmplsTunnelReversePerfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table augments the gmplsTunnelTable to provide per-tunnel packet performance information for the reverse direction of a bidirectional tunnel. It can be seen as supplementing the mplsTunnelPerfTable, which augments the mplsTunnelTable. For links that do not transport packets, these packet counters cannot be maintained. For such links, attempts to read the objects in this table will return noSuchInstance. A tunnel can be known to be bidirectional by inspecting the gmplsTunnelDirection object." REFERENCE "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812." ::= { gmplsTeObjects 5 } gmplsTunnelReversePerfEntry OBJECT-TYPE SYNTAX GmplsTunnelReversePerfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table is created by the LSR for every bidirectional GMPLS tunnel where packets are visible to the LSR." AUGMENTS { gmplsTunnelEntry } ::= { gmplsTunnelReversePerfTable 1 } GmplsTunnelReversePerfEntry ::= SEQUENCE { gmplsTunnelReversePerfPackets Counter32, gmplsTunnelReversePerfHCPackets Counter64, gmplsTunnelReversePerfErrors Counter32, gmplsTunnelReversePerfBytes Counter32, gmplsTunnelReversePerfHCBytes Counter64 } gmplsTunnelReversePerfPackets OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of packets forwarded on the tunnel in the reverse direction if it is bidirectional. This object represents the 32-bit value of the least significant part of the 64-bit value if both gmplsTunnelReversePerfHCPackets and this object are returned. For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return noSuchInstance." ::= { gmplsTunnelReversePerfEntry 1 } gmplsTunnelReversePerfHCPackets OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "High-capacity counter for number of packets forwarded on the tunnel in the reverse direction if it is bidirectional. For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return noSuchInstance." ::= { gmplsTunnelReversePerfEntry 2 } gmplsTunnelReversePerfErrors OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of errored packets received on the tunnel in the reverse direction if it is bidirectional. For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return noSuchInstance." ::= { gmplsTunnelReversePerfEntry 3 } gmplsTunnelReversePerfBytes OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of bytes forwarded on the tunnel in the reverse direction if it is bidirectional. This object represents the 32-bit value of the least significant part of the 64-bit value if both gmplsTunnelReversePerfHCBytes and this object are returned. For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return noSuchInstance." ::= { gmplsTunnelReversePerfEntry 4 } gmplsTunnelReversePerfHCBytes OBJECT-TYPE SYNTAX Counter64 MAX-ACCESS read-only STATUS current DESCRIPTION "High-capacity counter for number of bytes forwarded on the tunnel in the reverse direction if it is bidirectional. For links that do not transport packets, this packet counter cannot be maintained. For such links, this value will return noSuchInstance." ::= { gmplsTunnelReversePerfEntry 5 } gmplsTunnelErrorTable OBJECT-TYPE SYNTAX SEQUENCE OF GmplsTunnelErrorEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table augments the mplsTunnelTable. This table provides per-tunnel information about errors. Errors may be detected locally or reported through the signaling protocol. Error reporting is not exclusive to GMPLS, and this table may be applied in MPLS systems. Entries in this table are not persistent over system resets or re-initializations of the management system." REFERENCE "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812." ::= { gmplsTeObjects 6 } gmplsTunnelErrorEntry OBJECT-TYPE SYNTAX GmplsTunnelErrorEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table is created by the LSR for every tunnel where error information is visible to the LSR. Note that systems that read the objects in this table one at a time and do not perform atomic operations to read entire instantiated table rows at once, should, for each conceptual column with valid data, read gmplsTunnelErrorLastTime prior to the other objects in the row and again subsequent to reading the last object of the row. They should verify that the value of gmplsTunnelErrorLastTime did not change and thereby ensure that all data read belongs to the same error event." AUGMENTS { mplsTunnelEntry } ::= { gmplsTunnelErrorTable 1 } GmplsTunnelErrorEntry ::= SEQUENCE { gmplsTunnelErrorLastErrorType INTEGER, gmplsTunnelErrorLastTime TimeStamp, gmplsTunnelErrorReporterType InetAddressType, gmplsTunnelErrorReporter InetAddress, gmplsTunnelErrorCode Unsigned32, gmplsTunnelErrorSubcode Unsigned32, gmplsTunnelErrorTLVs OCTET STRING, gmplsTunnelErrorHelpString SnmpAdminString } gmplsTunnelErrorLastErrorType OBJECT-TYPE SYNTAX INTEGER { noError(0), unknown(1), protocol(2), pathComputation(3), localConfiguration(4), localResources(5), localOther(6) } MAX-ACCESS read-only STATUS current DESCRIPTION "The nature of the last error. Provides interpretation context for gmplsTunnelErrorProtocolCode and gmplsTunnelErrorProtocolSubcode. A value of noError(0) shows that there is no error associated with this tunnel and means that the other objects in this table entry (conceptual row) have no meaning. A value of unknown(1) shows that there is an error but that no additional information about the cause is known. The error may have been received in a signaled message or generated locally. A value of protocol(2) or pathComputation(3) indicates the cause of an error and identifies an error that has been received through signaling or will itself be signaled. A value of localConfiguration(4), localResources(5) or localOther(6) identifies an error that has been detected by the local node but that will not be reported through signaling." ::= { gmplsTunnelErrorEntry 1 } gmplsTunnelErrorLastTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The time at which the last error occurred. This is presented as the value of SysUpTime when the error occurred or was reported to this node. If gmplsTunnelErrorLastErrorType has the value noError(0), then this object is not valid and should be ignored. Note that entries in this table are not persistent over system resets or re-initializations of the management system." ::= { gmplsTunnelErrorEntry 2 } gmplsTunnelErrorReporterType OBJECT-TYPE SYNTAX InetAddressType MAX-ACCESS read-only STATUS current DESCRIPTION "The address type of the error reported. This object is used to aid in interpretation of gmplsTunnelErrorReporter." ::= { gmplsTunnelErrorEntry 3 } gmplsTunnelErrorReporter OBJECT-TYPE SYNTAX InetAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The address of the node reporting the last error, or the address of the resource (such as an interface) associated with the error. If gmplsTunnelErrorLastErrorType has the value noError(0), then this object is not valid and should be ignored. If gmplsTunnelErrorLastErrorType has the value unknown(1), localConfiguration(4), localResources(5), or localOther(6), this object MAY contain a zero value. This object should be interpreted in the context of the value of the object gmplsTunnelErrorReporterType." REFERENCE "1. Textual Conventions for Internet Network Addresses, RFC 4001, section 4, Usage Hints." ::= { gmplsTunnelErrorEntry 4 } gmplsTunnelErrorCode OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The primary error code associated with the last error. The interpretation of this error code depends on the value of gmplsTunnelErrorLastErrorType. If the value of gmplsTunnelErrorLastErrorType is noError(0), the value of this object should be 0 and should be ignored. If the value of gmplsTunnelErrorLastErrorType is protocol(2), the error should be interpreted in the context of the signaling protocol identified by the mplsTunnelSignallingProto object." REFERENCE "1. Resource ReserVation Protocol -- Version 1 Functional Specification, RFC 2205, section B. 2. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, section 7.3. 3. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 13.1." ::= { gmplsTunnelErrorEntry 5 } gmplsTunnelErrorSubcode OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-only STATUS current DESCRIPTION "The secondary error code associated with the last error and the protocol used to signal this tunnel. This value is interpreted in the context of the value of gmplsTunnelErrorCode. If the value of gmplsTunnelErrorLastErrorType is noError(0), the value of this object should be 0 and should be ignored." REFERENCE "1. Resource ReserVation Protocol -- Version 1 Functional Specification, RFC 2205, section B. 2. RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, section 7.3. 3. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 13.1. " ::= { gmplsTunnelErrorEntry 6 } gmplsTunnelErrorTLVs OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..65535)) MAX-ACCESS read-only STATUS current DESCRIPTION "The sequence of interface identifier TLVs reported with the error by the protocol code. The interpretation of the TLVs and the encoding within the protocol are described in the references. A value of zero in the first octet indicates that no TLVs are present." REFERENCE "1. Generalized MPLS Signaling - RSVP-TE Extensions, RFC 3473, section 8.2." ::= { gmplsTunnelErrorEntry 7 } gmplsTunnelErrorHelpString OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-only STATUS current DESCRIPTION "A textual string containing information about the last error, recovery actions, and support advice. If there is no help string, this object contains a zero length string. If the value of gmplsTunnelErrorLastErrorType is noError(0), this object should contain a zero length string, but may contain a help string indicating that there is no error." ::= { gmplsTunnelErrorEntry 8 } -- -- Notifications -- gmplsTunnelDown NOTIFICATION-TYPE OBJECTS { mplsTunnelAdminStatus, mplsTunnelOperStatus, gmplsTunnelErrorLastErrorType, gmplsTunnelErrorReporterType, gmplsTunnelErrorReporter, gmplsTunnelErrorCode, gmplsTunnelErrorSubcode } STATUS current DESCRIPTION "This notification is generated when an mplsTunnelOperStatus object for a tunnel in the gmplsTunnelTable is about to enter the down state from some other state (but not from the notPresent state). This other state is indicated by the included value of mplsTunnelOperStatus. The objects in this notification provide additional error information that indicates the reason why the tunnel has transitioned to down(2). Note that an implementation MUST only issue one of mplsTunnelDown and gmplsTunnelDown for any single event on a single tunnel. If the tunnel has an entry in the gmplsTunnelTable, an implementation SHOULD use gmplsTunnelDown for all tunnel-down events and SHOULD NOT use mplsTunnelDown. This notification is subject to the control of mplsTunnelNotificationEnable. When that object is set to false(2), then the notification must not be issued. Further, this notification is also subject to mplsTunnelNotificationMaxRate. That object indicates the maximum number of notifications issued per second. If events occur more rapidly, the implementation may simply fail to emit some notifications during that period, or may queue them until an appropriate time. The notification rate applies to the sum of all notifications in the MPLS-TE-STD-MIB and GMPLS-TE-STD-MIB modules applied across the whole of the reporting device. mplsTunnelOperStatus, mplsTunnelAdminStatus, mplsTunnelDown, mplsTunnelNotificationEnable, and mplsTunnelNotificationMaxRate objects are found in MPLS-TE-STD-MIB." REFERENCE "1. Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB), RFC 3812." ::= { gmplsTeNotifications 1 } gmplsTeGroups OBJECT IDENTIFIER ::= { gmplsTeConformance 1 } gmplsTeCompliances OBJECT IDENTIFIER ::= { gmplsTeConformance 2 } -- Compliance requirement for fully compliant implementations. gmplsTeModuleFullCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "Compliance statement for agents that provide full support for GMPLS-TE-STD-MIB. Such devices can then be monitored and also be configured using this MIB module. The mandatory group has to be implemented by all LSRs that originate, terminate, or act as transit for TE-LSPs/tunnels. In addition, depending on the type of tunnels supported, other groups become mandatory as explained below." MODULE MPLS-TE-STD-MIB -- The MPLS-TE-STD-MIB, RFC 3812 MANDATORY-GROUPS { mplsTunnelGroup, mplsTunnelScalarGroup } MODULE -- this module MANDATORY-GROUPS { gmplsTunnelGroup, gmplsTunnelScalarGroup } GROUP gmplsTunnelSignaledGroup DESCRIPTION "This group is mandatory for devices that support signaled tunnel set up, in addition to gmplsTunnelGroup. The following constraints apply: mplsTunnelSignallingProto should be at least read-only returning a value of ldp(2) or rsvp(3)." GROUP gmplsTunnelOptionalGroup DESCRIPTION "Objects in this group are optional." GROUP gmplsTeNotificationGroup DESCRIPTION "This group is mandatory for those implementations that can implement the notifications contained in this group." ::= { gmplsTeCompliances 1 } -- Compliance requirement for read-only compliant implementations. gmplsTeModuleReadOnlyCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "Compliance requirement for implementations that only provide read-only support for GMPLS-TE-STD-MIB. Such devices can then be monitored but cannot be configured using this MIB module." MODULE -- this module -- The mandatory group has to be implemented by all LSRs that -- originate, terminate, or act as transit for TE-LSPs/tunnels. -- In addition, depending on the type of tunnels supported, other -- groups become mandatory as explained below. MANDATORY-GROUPS { gmplsTunnelGroup, gmplsTunnelScalarGroup } GROUP gmplsTunnelSignaledGroup DESCRIPTION "This group is mandatory for devices that support signaled tunnel set up, in addition to gmplsTunnelGroup. The following constraints apply: mplsTunnelSignallingProto should be at least read-only returning a value of ldp(2) or rsvp(3)." GROUP gmplsTunnelOptionalGroup DESCRIPTION "Objects in this group are optional." GROUP gmplsTeNotificationGroup DESCRIPTION "This group is mandatory for those implementations that can implement the notifications contained in this group." OBJECT gmplsTunnelUnnumIf MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelAttributes MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelLSPEncoding MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelSwitchingType MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelLinkProtection MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelGPid MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelSecondary MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelDirection MIN-ACCESS read-only DESCRIPTION "Only forward(0) is required." OBJECT gmplsTunnelPathComp MIN-ACCESS read-only DESCRIPTION "Only explicit(2) is required." OBJECT gmplsTunnelUpstreamNotifyRecipientType SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) } MIN-ACCESS read-only DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support is required." OBJECT gmplsTunnelUpstreamNotifyRecipient SYNTAX InetAddress (SIZE(0|4|16)) MIN-ACCESS read-only DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1), and ipv6(2) sizes." OBJECT gmplsTunnelSendResvNotifyRecipientType SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) } MIN-ACCESS read-only DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support is required." OBJECT gmplsTunnelSendResvNotifyRecipient SYNTAX InetAddress (SIZE(0|4|16)) MIN-ACCESS read-only DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1), and ipv6(2) sizes." OBJECT gmplsTunnelDownstreamNotifyRecipientType SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) } MIN-ACCESS read-only DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support is required." OBJECT gmplsTunnelDownstreamNotifyRecipient SYNTAX InetAddress (SIZE(0|4|16)) MIN-ACCESS read-only DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1), and ipv6(2) sizes." OBJECT gmplsTunnelSendPathNotifyRecipientType SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) } MIN-ACCESS read-only DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support is required." OBJECT gmplsTunnelSendPathNotifyRecipient SYNTAX InetAddress (SIZE(0|4|16)) MIN-ACCESS read-only DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1), and ipv6(2) sizes." OBJECT gmplsTunnelAdminStatusFlags MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelExtraParamsPtr MIN-ACCESS read-only DESCRIPTION "Write access is not required." -- gmplsTunnelHopLabelStatuses has max access read-only OBJECT gmplsTunnelHopExplicitForwardLabel MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelHopExplicitForwardLabelPtr MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelHopExplicitReverseLabel MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT gmplsTunnelHopExplicitReverseLabelPtr MIN-ACCESS read-only DESCRIPTION "Write access is not required." -- gmplsTunnelARHopTable -- all objects have max access read-only -- gmplsTunnelCHopTable -- all objects have max access read-only -- gmplsTunnelReversePerfTable -- all objects have max access read-only -- gmplsTunnelErrorTable -- all objects have max access read-only OBJECT gmplsTunnelErrorReporterType SYNTAX InetAddressType { unknown(0), ipv4(1), ipv6(2) } DESCRIPTION "Only unknown(0), ipv4(1), and ipv6(2) support is required." OBJECT gmplsTunnelErrorReporter SYNTAX InetAddress (SIZE(0|4|16)) DESCRIPTION "An implementation is only required to support unknown(0), ipv4(1), and ipv6(2)." ::= { gmplsTeCompliances 2 } gmplsTunnelGroup OBJECT-GROUP OBJECTS { gmplsTunnelDirection, gmplsTunnelReversePerfPackets, gmplsTunnelReversePerfHCPackets, gmplsTunnelReversePerfErrors, gmplsTunnelReversePerfBytes, gmplsTunnelReversePerfHCBytes, gmplsTunnelErrorLastErrorType, gmplsTunnelErrorLastTime, gmplsTunnelErrorReporterType, gmplsTunnelErrorReporter, gmplsTunnelErrorCode, gmplsTunnelErrorSubcode, gmplsTunnelErrorTLVs, gmplsTunnelErrorHelpString, gmplsTunnelUnnumIf } STATUS current DESCRIPTION "Necessary, but not sufficient, set of objects to implement tunnels. In addition, depending on the type of the tunnels supported (for example, manually configured or signaled, persistent or non-persistent, etc.), the gmplsTunnelSignaledGroup group is mandatory." ::= { gmplsTeGroups 1 } gmplsTunnelSignaledGroup OBJECT-GROUP OBJECTS { gmplsTunnelAttributes, gmplsTunnelLSPEncoding, gmplsTunnelSwitchingType, gmplsTunnelLinkProtection, gmplsTunnelGPid, gmplsTunnelSecondary, gmplsTunnelPathComp, gmplsTunnelUpstreamNotifyRecipientType, gmplsTunnelUpstreamNotifyRecipient, gmplsTunnelSendResvNotifyRecipientType, gmplsTunnelSendResvNotifyRecipient, gmplsTunnelDownstreamNotifyRecipientType, gmplsTunnelDownstreamNotifyRecipient, gmplsTunnelSendPathNotifyRecipientType, gmplsTunnelSendPathNotifyRecipient, gmplsTunnelAdminStatusFlags, gmplsTunnelHopLabelStatuses, gmplsTunnelHopExplicitForwardLabel, gmplsTunnelHopExplicitForwardLabelPtr, gmplsTunnelHopExplicitReverseLabel, gmplsTunnelHopExplicitReverseLabelPtr } STATUS current DESCRIPTION "Objects needed to implement signaled tunnels." ::= { gmplsTeGroups 2 } gmplsTunnelScalarGroup OBJECT-GROUP OBJECTS { gmplsTunnelsConfigured, gmplsTunnelsActive } STATUS current DESCRIPTION "Scalar objects needed to implement MPLS tunnels." ::= { gmplsTeGroups 3 } gmplsTunnelOptionalGroup OBJECT-GROUP OBJECTS { gmplsTunnelExtraParamsPtr, gmplsTunnelARHopLabelStatuses, gmplsTunnelARHopExplicitForwardLabel, gmplsTunnelARHopExplicitForwardLabelPtr, gmplsTunnelARHopExplicitReverseLabel, gmplsTunnelARHopExplicitReverseLabelPtr, gmplsTunnelARHopProtection, gmplsTunnelCHopLabelStatuses, gmplsTunnelCHopExplicitForwardLabel, gmplsTunnelCHopExplicitForwardLabelPtr, gmplsTunnelCHopExplicitReverseLabel, gmplsTunnelCHopExplicitReverseLabelPtr } STATUS current DESCRIPTION "The objects in this group are optional." ::= { gmplsTeGroups 4 } gmplsTeNotificationGroup NOTIFICATION-GROUP NOTIFICATIONS { gmplsTunnelDown } STATUS current DESCRIPTION "Set of notifications implemented in this module. None is mandatory." ::= { gmplsTeGroups 5 } END -- -- Copyright (C) The IETF Trust (2007). -- -- This document is subject to the rights, licenses and restrictions -- contained in BCP 78, and except as set forth therein, the authors -- retain all their rights. -- -- This document and the information contained herein are provided on an -- "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS -- OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND -- THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS -- OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF -- THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED -- WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. -- -- Intellectual Property -- -- The IETF takes no position regarding the validity or scope of any -- Intellectual Property Rights or other rights that might be claimed to -- pertain to the implementation or use of the technology described in -- this document or the extent to which any license under such rights -- might or might not be available; nor does it represent that it has -- made any independent effort to identify any such rights. Information -- on the procedures with respect to rights in RFC documents can be -- found in BCP 78 and BCP 79. -- -- Copies of IPR disclosures made to the IETF Secretariat and any -- assurances of licenses to be made available, or the result of an -- attempt made to obtain a general license or permission for the use of -- such proprietary rights by implementers or users of this -- specification can be obtained from the IETF on-line IPR repository at -- http://www.ietf.org/ipr. -- -- The IETF invites any interested party to bring to its attention any -- copyrights, patents or patent applications, or other proprietary -- rights that may cover technology that may be required to implement -- this standard. Please address the information to the IETF at -- ietf-ipr@ietf.org. --